Boston housing prices
examples/ml/boston.py
from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor x, y = load_boston(return_X_y=True) print(x.shape) print(y.shape) #print(x) #print(y) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=0) linear_model = LinearRegression().fit(x_train, y_train) print(f"LinearRegression score train: {linear_model.score(x_train, y_train)}") print(f"LinearRegression score test: {linear_model.score(x_test, y_test)}") gradient_model = GradientBoostingRegressor(random_state=0).fit(x_train, y_train) print(f"GradientBoostingRegressor score train: {gradient_model.score(x_train, y_train)}") print(f"GradientBoostingRegressor score test: {gradient_model.score(x_test, y_test)}") forest_model = RandomForestRegressor(random_state=0).fit(x_train, y_train) print(f"RandomForestRegressor score train: {forest_model.score(x_train, y_train)}") print(f"RandomForestRegressor score test: {forest_model.score(x_test, y_test)}")