MLFlow Tracking
- Parameters: key-value input to the code (learning rate, what loss function is used, number of filters to use, depth of the tree)
- Metrics: numeric values
- Tags and Notes: information about a run (free text)
- Artifacts: files, data, model
- Source: what code ran?
- Version: which version of the code?
- Run: an instance of code
- Experiment: several Runs
with mlflow.start_run():
mlflow.log_param("name", value)
mlflow.log_param(dict)
...
mlflow.log_metric("name", value)
...
mlflow.sklearn.log_model(model)
mlflow ui