Resources
- Managing the Complete Machine Learning Lifecycle with MLflow: 3-part series
- repo
- repo
examples/mlops/dvc_mlflow.py
import mlflow import mlflow.sklearn import dvc.api path = 'data/data.csv' repo = '' # path to git repository version = 'v1' # git sha1, branch, or tag data_url = dvc.api.get_url( path=path, repo=repo, rev=version, ) mlflow.set_experiment('demo') df = pd.read_csv(data_url) mlflow.log_param('data_url', data_url) mlflow.log_param('data_version', version) mlflow.log_param('input_rows', df.shape[0]) mlflow.log_param('input_cols', df.shape[1]) cols_y = pd.DataFrame(list(train_y.columns)) cols_y.to_csv('features.csv', header=False, index=False) mlflow.log_artifact('features.csv')